SRI GURUDATTA COACHING CENTRE (SARMA INST.) MATHEMATICS

1. $\frac{4}{5}$ times of a natural number is ' 4 ' greater than $\frac{3}{4}$ times of its preceding number then the number is \qquad
(1) 80
(2) 84
(3) 60
(4) 65
2. If $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$, and given that $a^{2}+b^{2}+c^{2}=125$ and $a b+b c+c a=50$ then the value of $a+b+c=$ \qquad
(1) 5
(2) -5
(3) 15
(4) none
3. $0.0000456=$ \qquad
(1) 456×10^{-6}
(2) 4.56×10^{-6}
(3) 456×10^{-7}
(4) 456×10^{-8}
4. Two cycles are sold at the same price. One cycle is sold at 10% profit and the other at a loss of 10% then overall there is
(1) gain of 1%
(2) loss of 1%
(3) no loss or gain
(4) none
5. The mean of ' 9 ' observations is 45 . If 24 is wrongly printed as 42 then the correct mean is \qquad
(1) 42
(2) 44
(3) 41
(4) 43
6. The parallel sides of a trapezium measure $(a+b)$ unitsand $(a-b)$ units. If the perpendicular distance between them is p units then the area of the trapezium is \qquad
(1) $2 a p$ sq.units
(2) $2 b p$ sq.units
(3) ap sq.units
(4) $b p$ sq.units
7. If $2^{x}=\frac{1}{2^{y}}$ then $3^{x+y}=$
1) 2
2) 3
3) 1
4) 0
8. $15.7 \overline{32}$ in $_{q}^{\underline{p}}$ form
1) $\frac{15732}{1000}$
2) $\frac{15572}{990}$
3) $\frac{15575}{990}$
4) None of these
9. Rs. X when borrowed at the rate of $y \%$ compound interest payable half - yearly, the amount of 2 years is
1) $\times\left(1+\frac{y}{100}\right)^{4}$
2) $\times\left(1+\frac{y}{200}\right)^{4}$
3) $\times\left(1+\frac{y}{100}\right)^{2}$
4) $\times\left(1+\frac{y}{200}\right)^{2}$
10. If the difference of two digit numbers $\overline{7 A}-16=\overline{A 9}$ then $A=$ \qquad
(1) 3
(2) 4
(3) 5
(4) 7
11. $A B C$ is a triangle right angled at B. $A B=m^{2}-n^{2}(m>n) B C=2 m n$ then $A C=$
1) $m^{2}+n^{2}$
2) $m^{4}+n^{4}$
3) $4 m^{2} n^{2}$
4) $m+n$
12. The sum of first ' n ' natural numbers is $\frac{n(n+1)}{2}$. Hence, the sum $10+11+12+\ldots \ldots+35$ is
(1) 585
(2) 630
(3) 605
(4) none
13. Two of the sides of an equilateral triangle measure $(3 x-5) c m a n d ~(2 x-1) c m$. Then its perimeter is
(1) 24 cm
(2) 21 cm
(3) 12 cm
(4) none
14. Two towers 18 m and 13 m high stand upright on a ground. If their feet are 12 m apart, then the distance between their tops is \qquad .
(1) 5 m
(2) 31 m
(3) 13 m
(4) 18 m
15. The sides of a $\triangle A B C$ are $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$. The area of triangle is \qquad _.
(1) $40 \mathrm{~cm}^{2}$
(2) $24 \mathrm{~cm}^{2}$
(3) $30 \mathrm{~cm}^{2}$
(4) none of these
16. A circle touches all the four sides of a square of side 42 cm . the area of square not covered by the circle in square cm . is
1) 378
2) 1764
3) 1386
4) None of these
17. The value of $\left(-5 x^{2} y\right)\left(-\frac{2}{3} x y^{2} z\right)\left(\frac{8}{15} x y z^{2}\right)\left(-\frac{1}{4} z\right)$ is \qquad
(1) $-\frac{4}{9} x^{4} y^{4} z^{4}$
(2) $\frac{4}{9} x^{4} y^{4} z^{4}$
(3) $-\frac{4}{9} x^{3} y^{3} z^{3}$
(4) $\frac{4}{9} x^{3} y^{3} z^{3}$
18. Addition of $\frac{a^{2}}{2}+\frac{b^{3}}{3}-\frac{c^{3}}{4}, \frac{2 a^{2}}{3}+\frac{3 b^{3}}{4}-\frac{4 c^{3}}{5}$ and $a^{2}+b^{3}+c^{3}$ is \qquad .
(1) $\frac{13}{6} a^{2}-\frac{25}{12} b^{3}+\frac{1}{20} c^{3}$
(2) $\frac{13}{6} a^{2}+\frac{25}{12} b^{3}-\frac{1}{20} c^{3}$
(3) $\frac{13}{6} a^{2}-\frac{1}{20} b^{3}+\frac{25}{12} c^{3}$
(4) $\frac{13}{6} a^{2}-\frac{25}{12} b^{3}-\frac{1}{20} c^{3}$
19. Simplify $\left(2 x+\frac{1}{3 y}\right)^{2}-\left(2 x-\frac{1}{3 y}\right)^{2}$
(1) $\frac{4 x}{3 y}$
(2) $2\left(4 x^{2}+\frac{1}{9 y^{2}}\right)$
(3) $\frac{8 x}{3 y}$
(4) $\frac{4 y}{3 x}$
20. If $x+\frac{1}{x}=12$ then the value of $x-\frac{1}{x}$ is \qquad _.
(1) $\sqrt{140}$
(2) $\sqrt{120}$
(3) 10
(4) 11
21. Simplest form of $4 s t(s-t)-6 s^{2}\left(t-t^{2}\right)-3 t^{2}\left(2 s^{2}-s\right)+2 s t(s-t)$ is \qquad -
(1) $-s t^{2}$
(2) $-2 s t^{2}$
(3) $-3 s t^{2}$
(4) $-4 s t^{2}$
22. The value of ' x ', for which $\left(\frac{125}{8}\right)^{5} \cdot\left(\frac{125}{8}\right)^{x}=\left(\frac{5}{2}\right)^{18}$ is \qquad .
(1) 2
(2) 3
(3) 1
(4) 9
23. If $\frac{x}{y}=\frac{3}{4}$ then the incorrect relation from the following is \qquad .
(1) $\frac{x+y}{y}=\frac{7}{4}$
(2) $\frac{y}{y+x}=\frac{4}{7}$
(3) $\frac{x+2 y}{x}=\frac{11}{3}$
(4) $\frac{x-y}{y}=\frac{1}{4}$
24. The boxes A, B, B, D, E are put on a balance beam as shown in fig.

If the boxes are then arranged from the lightest to the heaviest, the one in the middle is
(1) A
(2) B
(3) E
(4) C
25. The magnitude of angle marked ' x ' is

(1) 50°
(2) 60°
(3) 70°
(4) 80°
26. If $\left(\frac{1}{5}\right)^{3 y}=0.008$ then $(0.25)^{y}$ will be \qquad .
(1) 1
(2) 0.25
(3) 0.125
(4) 0.0625
27. The area of two circles are in the ratio $25: 36$. Then the ratio of their circumference is \qquad .
(1) $6: 5$
(2) $3: 4$
(3) $4: 3$
(4) $5: 6$
28. In the given figure three semicircles are drawn on a line segment. The area of shaded portion is \qquad -

(1) $308 \mathrm{~cm}^{2}$
(2) $462 \mathrm{~cm}^{2}$
(3) $154 \mathrm{~cm}^{2}$
(4) $150 \mathrm{~cm}^{2}$
29. $A B C D$ is a rectangle. The area of the following shaded portion is \qquad -

(1) $100 \mathrm{~cm}^{2}$
(2) $110 \mathrm{~cm}^{2}$
(3) $120 \mathrm{~cm}^{2}$
(4) $130 \mathrm{~cm}^{2}$
30. If $a \bar{b} c$ means $a+b \div c$, then the value of $7 \overline{4} 2$ is
(1) 13
(2) 9
(3) 15
(4) 18

Space for rough work
31. The volume of a cuboid whose breadth is half of its length and the height is double the length is 1000 c.c. the total surface area of the cuboid in square cm . is

1) 300
2) 500
3) 700
4) 900
32. A racing cyclist covers one round of cycling track in 2 min and 40 sec . How many rounds will he complete in 4 hrs at the same speed.
(1) 80
(2) 85
(3) 90
(4) 95
33. The shaded quarter -circle has area 9π. The perimeter of shaded region is

(1) 3π
(2) $3(\pi+4)$
(3) 6π
(4) $6 \pi+4$
34. x students have x objects each, and each object has x equal parts. If the total no. of parts is 1331 , the no. of students is
1) 11
2) 121
3) 9
4) None of these
35. If $x+\frac{1}{x}=15$, then the value of $x^{2}+\frac{1}{x^{2}}$ is
(1) 225
(2) 223
(3) 169
(4) none of these
36. If $\frac{x-1}{x}=y$ and $\frac{y+1}{y}=x$ then the value of $x-y$ is
(1) 2
(2) -2
(3) 3
(4) -4
37. $\frac{\sqrt{49}}{49}$ equals
(1) $\frac{1}{7}$
(2) $-\frac{1}{7}$
(3) both (1) and (2)
(4) $\sqrt{\frac{-1}{7}}$
38. In the given figure if $A B=A C$ then $X=$

(1) 80°
(2) 70°
(3) 60°
(4) 110^{0}
39. Six rectangles each with a common base width of 2 have lengths of $1,4,9,16,25$ and 36 . What is the sum of the areas of the six rectangles.
(1) 91
(2) 93
(3) 162
(4) 182
40. Which integer is the identity under multiplication for any integer ' a '.
(1) $\frac{1}{a}$
(2) 1
(3) -1
(4) $-a$

PHYSICS

41. The density of a cuboid of mass 200 gm with dimensions $2 \mathrm{~cm} \times 4 \mathrm{~cm} \times 5 \mathrm{~cm}$ is
(1) $1000 \mathrm{Kgm}^{-3}$
(2) $\frac{1}{100} \mathrm{Kgm}^{-3}$
(3) $5000 \mathrm{Kgm}^{-3}$
(4) $2000 \mathrm{Kgm}^{-3}$
42. A car covers the first half of a certain distance with a speed of V_{1} and second half with a speed of V_{2}. The average speed during the whole journey is
(1) $\frac{V_{1}+V_{2}}{2}$
(2) $\frac{V_{1} V_{2}}{V_{1}+V_{2}}$
(3) $\sqrt{V_{1} V_{2}}$
(4) $\frac{2 V_{1} V_{2}}{V_{1}+V_{2}}$
43. The study of the earth's magnetic field is called
(1) Geography
(2) Terrestrial magnetism
(3) Terrestrial electricity
(4) magnetic study
44. A force of 12 N gives an object an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The force required to give it an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$ is
(1) 15 N
(2) 20 N
(3) 25 N
(4) 30 N
45. An athlete completes one round of a circular track of radius 7 min 10 sec , his speed is
(1) $4.4 \mathrm{~m} / \mathrm{s}$
(2) $2.2 \mathrm{~m} / \mathrm{s}$
(3) $44 \mathrm{~m} / \mathrm{s}$
(4) 0
46. A passenger in a moving train tosses a coin which falls behind him. It means that the motion of the train is
(1) accelerated
(2) uniform
(3) started
(4) along circular track
47. Sea water of density $1300 \mathrm{Kgm}^{-3}$ exerts a pressure of $104 \times 10^{5} \mathrm{Pascal}$ on the floor. Calculate the depth of the Sea at that place $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) 600 m
(2) 800 m
(3) 1000 m
(4) 1040 m
48. Two spheres have their radii in the ratio $1: 2$, the densities of their materials are in the ratio $2: 3$ and their specific heats are in the ratio $3: 4$. The ratio of their thermal capacities is,
(1) $1: 4$
(2) $1: 16$
(3) $1: 8$
(4) $4: 9$
49. How much heat is required to raise the temperature of 100 gm of water from $5^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$?
(1) 900 Kcal
(2) 90 Kcal
(3) 10 Kcal
(4) 9 Kcal
50. When an unknown amount of water at $70^{\circ} \mathrm{C}$ is added to 175 gm of water at $30^{\circ} \mathrm{C}$, the equilibrium temperature becomes $42^{\circ} \mathrm{C}$. Find the mass of water added.
(1) 10 gm
(2) 25 gm
(3) 75 gm
(4) 100 gm
51. A device which is used to find the depth of sea is called
(1) RADAR
(2) SONAR
(3) ECHO
(4) none of these
52. The frequency of a source is 20 KHz . The frequencies of sound wave produced by it in water and air will be
(1) same as that of source $=20 \mathrm{KHz}$
(2) $>20 \mathrm{KHz}$
(3) $<20 \mathrm{KHz}$
(4) depends upon velocity
53. A sound wave of wave length $\frac{1}{3} m$ has a frequency 996 Hz . Keeping the medium same, if frequency changes to 1328 Hz . The new wave length is
(1) 0.4 m
(2) 2.5 m
(3) 0.25 m
(4) 0.5 m
54. An echo is heard after 0.8 sec , when a person fires a cracker 132.8 m away from a high building. The speed of sound is
(1) $330 \mathrm{~m} / \mathrm{s}$
(2) $332 \mathrm{~m} / \mathrm{s}$
(3) $360 \mathrm{~m} / \mathrm{s}$
(4) $300 \mathrm{~m} / \mathrm{s}$
55. When an object is placed between the two plane mirrors making 60° with each other, how many multiple images will be formed by the mirrors?
(1) 5
(2) 6
(3) 7
(4) 8
56. The time taken to complete 20 oscillations by a seconds pendulum is
(1) 20 sec
(2) 50 sec
(3) 40 sec
(4) 5 sec
57. Charge acquired by rubbing is called
(1) Electricity
(2) current electricity
(3) static electricity
(4) all the above
58. The number of satellites to Saturn
(1) 0
(2) 1
(3) 50
(4) 53
59. Equal forces of ' F ' each act on isolated bodies ' A ' and ${ }^{\prime} B^{\prime}$ as shown in the figure.

The mass of ' B^{\prime} is three times that of ' A '. The magnitude of acceleration of ' A ' is
(1) 3 times that of ' B^{\prime}
(2) $1 / 3$ that of ' B '
(3) 9 times of $B^{\prime}(4) 1 / 9$ that of ${ }^{\prime} B^{\prime}$
60. A liquid of specific heat $0.5 \mathrm{cal} \mathrm{gm}^{-10} \mathrm{C}^{-1}$ at $60^{\circ} \mathrm{C}$ is mixed with another liquid of specific heat $0.3 \mathrm{calgm}^{-10} \mathrm{c}^{-1}$ at $20^{\circ} \mathrm{C}$. If the resultant temperature is $30^{\circ} \mathrm{C}$, the ratio of their masses is
(1) $1: 5$
(2) $1: 3$
(3) $2: 1$
(4) $5: 3$
61. Which of the following is not a property of magnetic lines of force
(1) Each line of force starts from ' N ' pole and ends on a ' S ' pole
(2) two lines of force do not intersect
(3) the lines of force lie close to each other in regions where the magnetic field is strong
(4) each line of force is a continuous curve
62. A body covered a distance of ' L ' along a semicircular path. The ratio of distance to displacement is
(1) $11: 7$
(2) $7: 11$
(3) $1: 4$
(4) $4: 1$
63. Suppose that you need to move 100 Kg desk. If the coefficient of friction between the floor and the desk is 0.2 , how much force you have to apply to get the desk to start moving ? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) 196 N
(2) 98 N
(3) 100 N
(4) 200 N
64. A cubical block of wood of density $5 \mathrm{gm} / \mathrm{cm}^{3}$ stands on table with sides of 10 cm . Find the thrust by the block of wood on the table. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) 500 N
(2) 500dyne
(3) 50 N
(4) 50dyne
65. Equal masses of two liquids of densities d_{1} and d_{2} are mixed together. The density of the mixture is
(1) $d_{1}+d_{2}$
(2) $\frac{d_{1}+d_{2}}{2}$
(3) $\frac{2 d_{1} d_{2}}{d_{1}+d_{2}}$
(4) $\frac{d_{1} d_{2}}{d_{1}+d_{2}}$

CHEMISTRY

66. Which of the following metals readily reacts with cold water?
(1) $M g$
(2) $A l$
(3) $N a$
(4) Fe
67. Which of the following metals is non-ductile?
(1) $A l$
(2) $Z n$
(3) Fe
(4) Cu
68. German silver is a mixture of
(1) $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ag}$
(2) $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$
(3) $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Sn}$
(4) $\mathrm{Mn}, \mathrm{Cu}, \mathrm{Ag}$
69. When steam is passed through magnesium , then
(1) magnesium hydroxide is formed
(2) magnesium hydride is formed
(3) magnesium oxide is formed
(4) water is formed
70. An element ' X ' forms an oxide " $X_{2} O$ " which turns red litmus to blue. Identify " X "
(1) A metal
(2) A non metal
(3) A metalloid
(4) none of these
71. When a substance ' X^{\prime} is hit with a hammer, it expands in size but does not break. This is because substance is
(1) ductile
(2) malleable
(3) elastic
(4) hard
72. Why is rusting of iron a chemical change?
(1) Because it changes it'scolour
(2) Because it becomes powdery
(3) Because a new substance is formed
(4) none of these
73. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}(\uparrow)$ is an example for
(1) Chemical combination
(2) Chemical decomposition
(3) Chemical displacement
(4) Chemical double decomposition
74. Which of the following mixtures of gases is produced, when Zinc nitrate is heated?
(1) $\mathrm{NO}_{2}+\mathrm{N}_{2}$
(2) $\mathrm{NO}_{2}+\mathrm{O}_{2}$
(3) $\mathrm{NO}+\mathrm{Cl}_{2}$
(4) $\mathrm{NO}+\mathrm{O}_{2}$
75. The correct order of increasing chemical reactivity of metals is
(1) $\mathrm{Zn}<\mathrm{Fe}<\mathrm{Ca}<\mathrm{Na}$
(2) $\mathrm{Fe}<\mathrm{Zn}<\mathrm{Ca}<\mathrm{Na}$
(3) $\mathrm{Fe}<\mathrm{Ca}<\mathrm{Na}<\mathrm{Zn}$
(4) $\mathrm{Fe}<\mathrm{Ca}<\mathrm{Zn}<\mathrm{Na}$
76. The amount of oxygen required for complete combustion of 9.6 gm of magnesium? [Atomic mass of elements:
$\mathrm{Mg}=24 \mathrm{U}, 0=16 \mathrm{U}$]
(1) 19.2 gm
(2) 4.8 gm
(3) 6.4 gm
(4) 3.2 gm
77. Bakelite and melamine are examples for
(1) thermo plastics
(2) thermosetting plastics
(3) both 1 \& 2 (4) none
78. Match the entries in column-I with that in column-II correctly

Column - I (Mixture)

(i) Bio gas
(ii) Natural gas
(iii) Petroleum gas
(iv) Carbogen
(1) $\mathrm{i}-\mathrm{s}$, ii $-r$, iii-p, iv-q
(3) $i-r$, ii $-s, i i i-p$, iv-q
79. Thermo plastics
(1) are linear polymers
(2) melt on heating
(3) molten polymer can be moulded into any shape
(4) all the above
80. Different varieties of coal differ in their
(1) volatile nature
(2) number of hydrogen atoms
(3) moisture
(4) carbon content
81. Ethyl mercaptan is added to LPG
(1) to give colour to it
(2) to give volume to it
(3) to give smell to it
(4) to make it a liquid
82. Which of the following is prepared by using wood pulp?
(1) Rayon
(2) Nylon
(3) Teflon
(4) Polyester
83. Which of the following conditions are necessary for combustion?
(i) There must be a combustible substance
(ii) There must be a continuous supply of supporter of combustion
(iii) The temperature of combustible substance should be above it's ignition temperature
(1) i\& ii only
(2) ii \& iii only
(3) i \& iii only
(4) i , ii \& iii
84. Which of the following exhibits variable valency?
(1) Sodium
(2) Magnesium
(3) Iron
(4) Calcium
85. What are the characteristics of graphite?
(i) It has a soft greasy touch
(ii) It does not react with acids and alkalis
(iii) It's a good conductor of heat and electricity
(1) i\& ii only
(2) ii \& iii only
(3) i \& iii only
(4) i, ii \& iii
86. The chemical composition of petrol is
(1) $\mathrm{CH}_{4}-\mathrm{C}_{4} \mathrm{H}_{10}$
(2) $\mathrm{C}_{5} \mathrm{H}_{12}-\mathrm{C}_{9} \mathrm{H}_{20}$
(3) $\mathrm{C}_{10} \mathrm{H}_{22}-\mathrm{C}_{12} \mathrm{H}_{26}$
(4) $\mathrm{C}_{20} \mathrm{H}_{42}-\mathrm{C}_{30} \mathrm{H}_{62}$
87. In free state, hydrogen is present in
(1) sun
(2) stars
(3) both 1 \& 2
(4) petroleum
88. α - rayparticle consists of
(1) two protons and three neutrons
(2) two protons and one neutron
(3) two protons and two neutrons
(4) two protons and two electrons
89. The maximum number of electrons in ' M ' shell of an atom is
(1) 2
(2) 18
(3) 32
(4) 8
90. The number of electrons present in valence shell of sodium atom is
(1) 2
(2) 1
(3) 3
(4) 4

